Kinetic Analysis of Amyloid Protofibril Dissociation and Volumetric


By Ryohei Kono, Hideki Tachibana, Kazuyuki Akasaka, Abdul Raziq Abdul Latif.


We present here the first detailed kinetic analysis of the dissociation reaction of amyloid protofibrils by utilizing pressure as an accelerator of the reaction. The experiment is carried out on an excessively diluted typical protofibril solution formed from an intrinsically denatured disulfide-deficient variant of hen lysozyme with Trp fluorescence as the reporter in the pressure range 3400 MPa. From the analysis of the time-dependent fluorescence decay and the length distribution of the protofibrils measured on atomic force microscopy, we conclude that the protofibril grows or decays by attachment or detachment of a monomer at one end of the protofibril with a monomer dissociation rate independent of the length of the fibril. Furthermore, we find that the dissociation reaction is strongly dependent on pressure, characterized with a negative activation volume DVoz 50.5 6 1.60 ml mol1 at 0.1 MPa and with a negative activation compressibility Dkz 0.013 6 0.001 ml mol1 bar1 or 0.9 3 106 ml g1 bar1. These results indicate that the protofibril is a highly compressible high-volume state, but that it becomes less compressible and less voluminous in the transition state, most probably due to partial hydration of the existing voids. The system eventually reaches the lowest-volume state with full hydration of the monomer in the dissociated state.


  • Dobson, C. M. 1999. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24:329332.
  • Koo, E. H., P. T. Lansbury, and J. W. Kelly. 1999. Amyloid disease; abnormal protein aggregation in neurodegeneration. Proc. Natl. Acad. Sci. USA. 96:99899990.
  • Dubois, J., A. A. Ismail, S. L. Chan, and Z. Ali-Khan. 1999. Fourier transform infrared spectroscopic investigation of temperature- and pressure-induced disaggregation of amyloid A. Scand. J. Immunol. 49:376380.
  • Foguel, D., M. C. Suarez, A. D. Ferrao-Gonzales, T. C. Porto, L. Palmieri, C. M. Einsiedler, L. R. Andrade, H. A. Lashuel, P. T. Lansbury, J. W. Kelly, and J. L. Silva. 2003. Dissociation of amyloid fibrils of alpha-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities. Proc. Natl. Acad. Sci. USA. 100:98319836.
  • Seefeldt, M. B., J. Ouyang, W. A. Froland, J. F. Carpenter, and T. W. Randolph. 2004. High-pressure refolding of bikunin; efficacy and thermodynamics. Protein Sci. 13:26392650.
  • Carulla, N., G. L. Caddy, D. R. Hall, J. Zurdo, M. Gairi, M. Feliz, and E. Giralt. 2005. Molecular recycling within amyloid fibrils. Nature. 436:554558.
  • Tachibana, H. 2000. Propensities for the formation of individual disulfide bonds in hen lysozyme and in the size and stability of disulfide-associated submolecular structure. FEBS Lett. 480:175178.
  • Niraula, T. N., T. Konno, H. Li, H. Yamada, K. Akasaka, and H. Tachibana. 2004. Pressure-dissociable reversible assembly of intrinsically denatured lysozyme is a precursor for amyloid fibrils. Proc. Natl. Acad. Sci. USA. 101:40894093.
  • Kamatari, Y. O., S. Yokoyama, H. Tachibana, and K. Akasaka. 2005. Pressure-jump NMR study of dissociation and association of amyloid protofibrils. J. Mol. Biol. 349:916921.
  • Oosawa, F., and S. Asakura. 1975. Thermodynamics of the Polymerization of Protein. Academic Press, London, UK.
  • Imoto, T., L. S. Forster, J. A. Rupley, and F. Tanaka. 1972. Fluorescence of lysozyme; emissions from tryptophan residues 62 and 108 and energy migration. Proc. Natl. Acad. Sci. USA. 69:11511155.
  • Goldsbury, C., J. Kistler, U. Aebi, T. Arvinte, and G. J. S. Cooper. 1999. Watching amyloid fibrils grow by time-lapse atomic force microscopy. J. Mol. Biol. 285:3339.
  • Blackley, H. K. L., G. H. W. Sanders, M. C. Davies, C. J. Roberts, S. J. B. Tendler, and M. J. Wilkinson. 2000. In-situ atomic force microscopy study of b-amyloid fibrillization. J. Mol. Biol. 298:833840.
  • Scheibel, T., A. S. Kowal, J. D. Bloom, and S. L. Lindquist. 2001. Bidirectional amyloid fiber growth for a yeast prion determinant. Curr. Biol. 11:366369.
  • Inoue, Y., A. Kishimoto, J. Hirao, M. Yoshida, and H. Taguchi. 2001. Strong growth polarity of yeast prion fiber revealed by single fiber imaging. J. Biol. Chem. 276:3522735230.
  • Ban, T., D. Hamada, K. Hasegawa, H. Naiki, and Y. Goto. 2003. Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J. Biol. Chem. 278:1646216465.
  • Royer, C. A. 2002. Revisiting volume changes in pressure-induced protein unfolding. Biochim. Biophys. Acta. 1595:201209.
  • Zipp, A., and W. Kauzmann. 1973. Pressure denaturation of metmyoglobin. Biochemistry. 12:42174228.
  • Li, T. M., J. W. Hook, H. G. Drickamer, and G. Weber. 1976. Plurality of pressure-denatured forms in chymotrypsinogen and lysozyme. Biochemistry. 15:55715580.
  • Peng, X., J. Jonas, and J. L. Silva. 1993. Molten-globule conformation of Arc repressor monomers determined by high-pressure 1H-NMR spectroscopy. Proc. Natl. Acad. Sci. USA. 90:17761780.
  • Samarasinghe, S. D., D. M. Campbell, and J. J. Jonas. 1992. Highresolution NMR study of the pressure-induced unfolding of lysozyme. Biochemistry. 31:77737778.
  • Hawley, S. A. 1971. Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry. 10:24362442.
  • Prehoda, K. E., E. S. Moorberry, and J. L. Markley. 1998. Pressure denaturation of proteins: evaluation of compressibility effects. Biochemistry. 37:57855790.
  • Lassalle, M. W., H. Yamada, and K. Akasaka. 2000. The pressuretemperature free energy-landscape of staphylococcal nuclease monitored by 1H-NMR. J. Mol. Biol. 298:293302.
  • Seemann, H., R. Winter, and C. A. Royer. 2001. Volume expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of Staphylococcal nuclease. J. Mol. Biol. 307: 10911102.
  • Chalikian, T. V., and K. J. Breslauer. 1996. On volume changes accompanying conformational transitions of biopolymers. Proc. Natl. Acad. Sci. USA. 93:10121014.
  • Taulier, N., and T. V. Chalikian. 2002. Compressibility of protein transitions. Biochim. Biophys. Acta. 1595:4870.
  • Korzhnev, D. M., I. Bezsonova, F. Evanics, N. Taulier, Z. Zhou, Y. Bai, T. V. Chalikian, R. S. Prosser, and L. E. Kay. 2006. Probing the transition state ensemble of a protein folding reaction by pressure-dependentNMR relaxation dispersion. J. Am. Chem. Soc. 128:52625269.